

Concept: Solving Linear Systems

Name:

You should have completed Equations – Section 6 Part A: Solving Linear Systems before beginning this handout.

COMPUTER COMPONENT

Instructions:	In UMATH X follow the Content Menu path:		
	Equations > Solving Linear Systems		
NOTE: Use the Menu button in order to get to the lesson where you left off.			
	 Work through all Sub Lessons of the following Lessons in order: Solve a Linear System by Comparison Solve Problems Using Linear Systems 		
	As you work through the computer exercises, you will be prompted to make notes in your notebook/math journal.		

NOTES:

Solve a Linear System by Comparison (Intersecting Lines)

Step	Example
1.	2 x - y + 3 = 0 x - y - 1 = 0
one of the	$y = \x + \(1)$
for equation. (<i>We choose</i> y.)	y = $x - $ (2)
2.	$(1) \qquad (2)$ $\underline{\qquad } x + \underline{\qquad } = \underline{\qquad } x - \underline{\qquad }$
For the,	
of (1) = of (2)	

3.	
Solve for variable.	x = x =
 4. Substitute x = into one of the equations to solve for 	y = 3x + 2 (1) $y = 3(__) + 2$ Common point is (,)
5 the solution in each equation.	2x - y + 3 = 0 (1) $x - y - 1 = 0 (2)$ For (1) L.S. = 2x - y + 3
	$= 2(\) - (\) + 3$ = R.S. = 0
	L.S. = $x - y - 1$ = () - () - 1 =

Solving a Linear System by Comparison (Intersecting Lines Involving Fractions)

➢ For each equation, _____ the _____ from the equation.

(______ each term by a ______.)

Once we have ______ and _____ the bracket, you now have equations with which you can continue to solve using the above steps for solving a linear System by Comparison (Intersecting Lines).

Solving a Linear System by Comparison (Parallel Lines)

Parallel lines do not intersect. Therefore _____ of (1) cannot _____ of (2).

It is ______ possible to solve for _____ (or for _____), and these types of Linear Systems have ______.

Solving a Linear System by Comparison (Coincidental Lines)

Coincidental Lines are IDENTICAL. _____ points on line _____ are also on line _____. This Linear System has an ______ number of _____.

OFF COMPUTER EXERCISES

- 1. Solve the following linear systems by comparison.
 - (a) y = 2x + 3y = x - 6

(b) x + y - 4 = 02 x + y + 1 = 0

(c)
$$5x + 2y - 8 = 0$$

 $2x + 4y + 8 = 0$

(d) 3x + 2y - 5 = 04x + 3y - 2 = 0

2. The local fair charges \$6.00 for admission, plus \$0.50 for every ride ticket you buy. The neighboring town's fair offers free admission, but charges \$1.00 for every ride ticket. *When is the local fair the better deal?*

3. The cost to rent a car with Company A is \$25 per day plus \$0.15 per km driven. The cost to rent a car with Company B is \$30 per day plus \$0.10 per km driven. *Under what circumstances is Company A the better company to rent with?*

4. The cost to rent a movie at Video Plus is \$2.00 for the first night plus \$0.50 for every night after that. The cost to rent a movie at Videos-R-Us is \$6.00 for 7 nights. *When is Videos-R-Us the better deal?*

5. Which method would you choose to solve the given system of equations? Why? *Justify your answer and then solve it.*

6x + 4y = 23 (1)

6 x + 14 y = 10 (2)

6. A teacher hands out a math test to 36 students. The total marks for the test is 100 and it has 38 problems. The questions are worth either 5 marks or 2 marks. *How many questions of each type of mark are on the test? Justify your answer.*

