

Name:

Concept: Square Root

Warm Up

1. Multiply the following:

(a) $2^2 = 4$	(b) $3^2 = 9$	(c) $4^2 = 16$
(d) $5^2 = 25$	(e) $6^2 = 36$	(f) $7^2 = 49$

COMPUTER COMPONENT

Instructions:	In UMATH X follow the Content Menu path:			
	Exponents > Square Root			
	k through all Sub Lessons of the following Lessons in order : Squaring Numbers Square Roots Radical Signs Square Roots of Negative Numbers Examples Questions Estimating Square Roots Estimating Square Roots on a Number Line			
Additional Required Materials: Scientific calculator				
As y m	ou work through the computer exercises, you will be prompted to ake notes in your notebook/math journal.			

NOTES

Squaring Numbers

A number is squared when it is *<u>multiplied</u>* by *itself*.

Fill in the following examples of squares.

 $1^2 = 1 \times 1 = 1$

 2^2 = 2×2 = 4

$(-2)^2$	=	<u>-2 × -2</u>	=	<u>4</u>
7 ²	=	<u>7 × 7</u>	=	<u>49</u>
$(-7)^2$	=	<u>-7 × -7</u>	=	<u>49</u>
4.5 ²	=	<u>4.5 × 4.5</u>	=	<u>20.25</u>
$(-4.5)^2$	=	<u>-4.5 × -4.5</u>	=	<u>20.25</u>
a^2	=	<u>a × a</u>	=	<u>a</u> ²
$(-a)^2$	=	<u>-a × -a</u>	=	<u>a</u> ²

Fill in the blanks.

(a) Every positive number has <u>2</u> square roots; one <u>positive</u> and one <u>negative</u>.

Example:

 $2^2 = 2 \times 2 = 4$ (-2)² = (-2) × (-2) = 4

The square roots of $\underline{4}$ are $\underline{2}$ and $\underline{-2}$.

(b) The $\sqrt{}$ symbol is called a <u>*radical*</u> sign.

(c) The radical sign tells you to take the *positive* square root.

What number has been squared to get the number under the square root symbol?

A number cannot be *multiplied* by *itself* to give a *negative* product.

The product is always a *positive* number.

We <u>cannot</u> take the square root of a <u>negative</u> number.

Remember:

> Operations *under* the *radical* sign are done *first*.

Example:

$$\sqrt{4 + 10} = \sqrt{\frac{14}{14}}$$
$$= 3.74$$

➤ A square root can be written as a *product* of two radicals.

Example:

=

When estimating square roots.

- First, find an easier square root that is close, but a little <u>less</u> than it.
- > Then find an easier square root that is just a little *greater* than it.

Example:

(a)
$$\sqrt{28}$$
 is between $\sqrt{25}$ and $\sqrt{36}$

OFF COMPUTER EXERCISES

- 1. Find the square roots of each number.
 - (a) $81 = 9 \times 9$ and -9×-9 (b) $64 = 8 \times 8$ and -8×-8
 - (c) $1=1 \times 1$ and -1×-1 (d) 0=0
 - (e) $100 = 10 \times 10$ and -10×-10 (f) $144 = 12 \times 12$ and -12×-12
 - (g) $9 = 3 \times 3$ and -3×-3 (h) $225 = 15 \times 15$ and -15×-15
- 2. Which square roots are the following between?
 - (a) $\sqrt{72}$ between $\sqrt{64}$ and $\sqrt{81}$
 - (b) $\sqrt{38}$ between $\sqrt{36}$ and $\sqrt{49}$
 - (c) $\sqrt{109}$ between $\sqrt{100}$ and $\sqrt{121}$

3. Fill in the missing numbers on the radical clock face:

4. Evaluate.

- (a) $\sqrt{36} = 6$
- (b) $\sqrt{25} = 5$
- (c) $\sqrt{225} = 15$
- (d) $\sqrt{81}$ $\sqrt{144}$ = 9 12 = -3
- (e) $\sqrt{9}$ + $\sqrt{16}$ = 3 + 4 = 7
- (f) $\sqrt{9+16} = 5$

(g)
$$\sqrt{9 \times 25} = 15$$

(h)
$$\sqrt{9} \times \sqrt{25} = 15$$

(i)
$$\sqrt{\frac{100}{16}} = \sqrt{\frac{10}{4}}$$

(j)
$$\sqrt{\frac{4}{9}} = \sqrt{\frac{2}{3}}$$

$$(k) \sqrt{(\sqrt{81})} = 3$$

(1) 4 +
$$\sqrt{3^3 + 3^2}$$
 = 4 + 6 = 10

5. Evaluate each expression if x = 3, y = -4 and z = -7.

$$(a) \quad -\sqrt{3x} = -3$$

$$(b) \quad \sqrt{15x - y} = 7$$

(c)
$$\sqrt{y^2+3x} = 5$$

$$(d) \quad \sqrt{x^2-z} = 4$$

- 6. Answer the following and show all your steps.
 - (a) If the area of a square is 289 square mm, calculate the dimensions.

$$\sqrt{289} = 17 mm \times 17 mm$$

www.umathx.com

(b) If the area of a square is 0.0081 square cm, calculate the dimensions.

$$\sqrt{0.0081} = 0.09 \times 0.09 \text{ cm}$$

(c) A rectangle has dimensions of 4 cm by 16 cm and is equal to a second figure which is a square. *Find the dimensions of the square*.

$$4 \times 16 = 64 = \sqrt{64} = 8 \times 8$$

Challenge

7. Calculate the square root of $(4^3 + 4^3 + 4^3 + 4^3)$.

$$=\sqrt{256}=16$$

8. Find a number x to make this statement true:

 $4 + (x \div 4^{2}) - 2 \times 3^{2} = 18$ $4 + (0 \div 16) - 2 \times 9 = 18$ $4 + (0) - 2 \times 9 = 18$ $2 \times 9 = 18$ By 'guess and check', it is established that x = 0

